171 research outputs found

    Oriented right-angled Artin pro-\ell groups and maximal pro-\ell Galois groups

    Full text link
    For a prime number \ell we introduce and study oriented right-angled Artin pro-\ell groups GΓ,λG_{\Gamma,\lambda}(oriented pro-\ell RAAGs for short) associated to a finite oriented graph Γ\Gamma and a continuous group homomorphism λ ⁣:ZZ×\lambda\colon\mathbb Z_\ell\to\mathbb Z_\ell^\times. We show that an oriented pro-\ell RAAG GΓ,λG_{\Gamma,\lambda} is a Bloch-Kato pro-\ell group if, and only if, (GΓ,λ,θΓ,λ)(G_{\Gamma,\lambda},\theta_{\Gamma,\lambda}) is an oriented pro-\ell group of elementary type generalizing a recent result of I. Snopche and P. Zalesskii. Here θΓ,λ ⁣:GΓ,λZp×\theta_{\Gamma,\lambda}\colon G_{\Gamma,\lambda}\to\mathbb Z_p^\times denotes the canonical \ell-orientation on GΓ,λG_{\Gamma,\lambda}. We invest some effort in order to show that oriented right-angled Artin pro-\ell groups share many properties with right-angled Artin pro-\ell-groups or even discrete RAAG's, e.g., if Γ\Gamma is a specially oriented chordal graph, then GΓ,λG_{\Gamma,\lambda} is coherent, generalizing a result of C. Droms. Moreover, in this case (GΓ,λ,θΓ,λ)(G_{\Gamma,\lambda},\theta_{\Gamma,\lambda}) has the Positselski-Bogomolov property generalizing a result of H. Servatius, C. Droms and B. Servatius for discrete RAAG's. If Γ\Gamma is a specially oriented chordal graph and Im(λ)1+4Z2{\rm Im}(\lambda)\subseteq 1+4\mathbb Z_2 in case that =2\ell=2, then H(GΓ,λ,F)Λ(Γ¨op){\rm H}^\bullet(G_{\Gamma,\lambda},\mathbb F_\ell) \simeq \Lambda^\bullet(\ddot{\Gamma}^{\rm op}) generalizing a well known result of M. Salvetti.Comment: The differences between the 1st version (Apr'23) and the 2nd are: correction of a couple of minor misprints, dedication to the memory of Avinoam Man

    Visual exploration and retrieval of XML document collections with the generic system X2

    Get PDF
    This article reports on the XML retrieval system X2 which has been developed at the University of Munich over the last five years. In a typical session with X2, the user first browses a structural summary of the XML database in order to select interesting elements and keywords occurring in documents. Using this intermediate result, queries combining structure and textual references are composed semiautomatically. After query evaluation, the full set of answers is presented in a visual and structured way. X2 largely exploits the structure found in documents, queries and answers to enable new interactive visualization and exploration techniques that support mixed IR and database-oriented querying, thus bridging the gap between these three views on the data to be retrieved. Another salient characteristic of X2 which distinguishes it from other visual query systems for XML is that it supports various degrees of detailedness in the presentation of answers, as well as techniques for dynamically reordering and grouping retrieved elements once the complete answer set has been computed

    Two-Step Laser Post-Processing for the Surface Functionalization of Additively Manufactured Ti-6Al-4V Parts

    Get PDF
    Laser powder bed fusion (LPBF) is one of the additive manufacturing methods used to build metallic parts. To achieve the design requirements, the LPBF process chain can become long and complex. This work aimed to use dierent laser techniques as alternatives to traditional post-processes, in order to add value and new perspectives on applications, while also simplifying the process chain. Laser polishing (LP) with a continuous wave laser was used for improving the surface quality of the parts, and an ultrashort pulse laser was applied to functionalize it. Each technique, individually and combined, was performed following distinct stages of the process chain. In addition to removing asperities, the samples after LP had contact angles within the hydrophilic range. In contrast, all functionalized surfaces presented hydrophobicity. Oxides were predominant on these samples, while prior to the second laser processing step, the presence of TiN and TiC was also observed. The cell growth viability study indicated that any post-process applied did not negatively aect the biocompatibility of the parts. The presented approach was considered a suitable post-process option for achieving dierent functionalities in localized areas of the parts, for replacing certain steps of the process chain, or a combination of both

    Formulation of DNA Nanocomposites: Towards Functional Materials for Protein Expression

    Get PDF
    DNA hydrogels are an emerging class of materials that hold great promise for numerous biotechnological applications, ranging from tissue engineering to targeted drug delivery and cell-free protein synthesis (CFPS). In addition to the molecular programmability of DNA that can be used to instruct biological systems, the formulation of DNA materials, e.g., as bulk hydrogels or microgels, is also relevant for specific applications. To advance the state of knowledge in this research area, the present work explores the scope of a recently developed class of complex DNA nanocomposites, synthesized by RCA polymerization of DNA-functionalized silica nanoparticles (SiNPs) and carbon nanotubes (CNTs). SiNP/CNT-DNA composites were produced as bulk materials and microgels which contained a plasmid with transcribable genetic information for a fluorescent marker protein. Using confocal microscopy and flow cytometry, we found that the materials are very efficiently taken up by various eukaryotic cell lines, which were able to continue dividing while the ingested material was evenly distributed to the daughter cells. However, no expression of the encoded protein occurred within the cells. While the microgels did not induce production of the marker protein even in a CFPS procedure with eukaryotic cell lysate, the bulk composites proved to be efficient templates for CFPS. This work contributes to the understanding of the molecular interactions between DNA composites and the functional cellular machinery. Implications for the use of such materials for CFPS procedures are discussed

    Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Get PDF
    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA;SEONLA-BSA),or with dextran (SEONDEX). Both micronuclei testing and the detection of H2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system

    The ground state energy of the Edwards-Anderson spin glass model with a parallel tempering Monte Carlo algorithm

    Get PDF
    We study the efficiency of parallel tempering Monte Carlo technique for calculating true ground states of the Edwards-Anderson spin glass model. Bimodal and Gaussian bond distributions were considered in two and three-dimensional lattices. By a systematic analysis we find a simple formula to estimate the values of the parameters needed in the algorithm to find the GS with a fixed average probability. We also study the performance of the algorithm for single samples, quantifying the difference between samples where the GS is hard, or easy, to find. The GS energies we obtain are in good agreement with the values found in the literature. Our results show that the performance of the parallel tempering technique is comparable to more powerful heuristics developed to find the ground state of Ising spin glass systems.Comment: 30 pages, 17 figures. A new section added. Accepted for publication in Physica

    Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings

    Get PDF
    Biomedical applications require substrata that allow for the grafting, colonization and control of eukaryotic cells. Currently available materials are often limited by insufficient possibilities for the integration of biological functions and means for tuning the mechanical properties. We report on tailorable nanocomposite materials in which silica nanoparticles are interwoven with carbon nanotubes by DNA polymerization. The modular, well controllable and scalable synthesis yields materials whose composition can be gradually adjusted to produce synergistic, non-linear mechanical stiffness and viscosity properties. The materials were exploited as substrata that outperform conventional culture surfaces in the ability to control cellular adhesion, proliferation and transmigration through the hydrogel matrix. The composite materials also enable the construction of layered cell architectures, the expansion of embryonic stem cells by simplified cultivation methods and the on-demand release of uniformly sized stem cell spheroids

    The equity-like behaviour of sovereign bonds

    Get PDF
    Using a rich dataset of high frequency historical information from 2004 to 2013 we study the determinants of European sovereign bond returns over calm and crisis periods. We find that the sign of the equity beta crucially depends on country risk. In low risk countries, government bonds represent a natural hedge against equity risk as the equity beta is negative regardless of market conditions. On the other hand, government bonds of high risk countries lose their “safe-asset” status and exhibit more equity-like behaviour during the sovereign debt crisis, with positive and strongly significant co-movements relative to the stock market. Our estimates indicate that the equity beta switches from negative to positive when a sovereign’s credit spread rises above 2%. We find that the decoupling of the government bond market between high risk and low risk countries implies that indiscriminate portfolio diversification does not pay. Instead, “prudent diversification” appears to offer superior risk adjusted returns in periods of sovereign stress and through the economic cycle

    Arabidopsis COGWHEEL1 links light perception and gibberellins with seed tolerance to deterioration

    Full text link
    [ES] Significance Statement Seed tolerance to deterioration depends on anti-aging defenses only partially understood. COG1 encodes a transcription factor previously described to attenuate phytochrome responses to light and we found that it is a positive regulator of seed tolerance to deterioration while light perception by phytochromes is negative. The proposed mechanism is that COG1 increases gibberellins levels, leading to a seed coat containing more suberin and less permeable to oxygen. Light is known to inhibit gibberellins action.This work was supported by grant BIO2014-52621-R from the Spanish 'Ministerio de Economia y Competitividad', Madrid. We thank the 'Servicio de Cuantificacion de Hormonas Vegetales' of our institute for the determination of GA, ABA and auxin.Bueso Ródenas, E.; Muñoz Bertomeu, J.; Campos, F.; Martínez-Ortuño, CJ.; Tello Lacal, C.; Martínez-Almonacid, I.; Ballester Fuentes, P.... (2016). Arabidopsis COGWHEEL1 links light perception and gibberellins with seed tolerance to deterioration. The Plant Journal. 87(6):583-596. https://doi.org/10.1111/tpj.13220S583596876Albert, S., Delseny, M., & Devic, M. (1997). BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. The Plant Journal, 11(2), 289-299. doi:10.1046/j.1365-313x.1997.11020289.xAlejandro, S., Rodríguez, P. L., Bellés, J. M., Yenush, L., García-Sanchez, M. J., Fernández, J. A., & Serrano, R. (2007). An Arabidopsis quiescin-sulfhydryl oxidase regulates cation homeostasis at the root symplast–xylem interface. The EMBO Journal, 26(13), 3203-3215. doi:10.1038/sj.emboj.7601757Arsovski, A. A., Haughn, G. W., & Western, T. L. (2010). Seed coat mucilage cells ofArabidopsis thalianaas a model for plant cell wall research. Plant Signaling & Behavior, 5(7), 796-801. doi:10.4161/psb.5.7.11773Bailly, C. (2004). Active oxygen species and antioxidants in seed biology. Seed Science Research, 14(2), 93-107. doi:10.1079/ssr2004159Beisson, F., Li, Y., Bonaventure, G., Pollard, M., & Ohlrogge, J. B. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. The Plant Cell, 19(1), 351-368. doi:10.1105/tpc.106.048033Bernard, V., Lecharny, A., & Brunaud, V. (2010). Improved detection of motifs with preferential location in promoters. Genome, 53(9), 739-752. doi:10.1139/g10-042Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review, 127-152. doi:10.1016/s1387-2656(05)11004-7BRAYBROOK, S., & HARADA, J. (2008). LECs go crazy in embryo development. Trends in Plant Science, 13(12), 624-630. doi:10.1016/j.tplants.2008.09.008Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., … Vingron, M. (2001). Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nature Genetics, 29(4), 365-371. doi:10.1038/ng1201-365Brundrett, M. C., Kendrick, B., & Peterson, C. A. (1991). Efficient Lipid Staining in Plant Material with Sudan Red 7B or Fluoral Yellow 088 in Polyethylene Glycol-Glycerol. Biotechnic & Histochemistry, 66(3), 111-116. doi:10.3109/10520299109110562Bueso, E., Muñoz-Bertomeu, J., Campos, F., Brunaud, V., Martínez, L., Sayas, E., … Serrano, R. (2013). ARABIDOPSIS THALIANA HOMEOBOX25 Uncovers a Role for Gibberellins in Seed Longevity. Plant Physiology, 164(2), 999-1010. doi:10.1104/pp.113.232223Bueso, E., Ibañez, C., Sayas, E., Muñoz-Bertomeu, J., Gonzalez-Guzmán, M., Rodriguez, P. L., & Serrano, R. (2014). A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. Plant Science, 215-216, 110-116. doi:10.1016/j.plantsci.2013.11.004Chandler, J. W., Abrams, S. R., & Bartels, D. (1997). The effect of ABA analogs on callus viability and gene expression in Craterostigma plantagineum. Physiologia Plantarum, 99(3), 465-469. doi:10.1034/j.1399-3054.1997.990315.xChâtelain, E., Satour, P., Laugier, E., Ly Vu, B., Payet, N., Rey, P., & Montrichard, F. (2013). Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proceedings of the National Academy of Sciences, 110(9), 3633-3638. doi:10.1073/pnas.1220589110Chen, H., Chu, P., Zhou, Y., Li, Y., Liu, J., Ding, Y., … Huang, S. (2012). Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. Journal of Experimental Botany, 63(11), 4107-4121. doi:10.1093/jxb/ers093Clerkx, E. J. M., Blankestijn-De Vries, H., Ruys, G. J., Groot, S. P. C., & Koornneef, M. (2004). Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum, 121(3), 448-461. doi:10.1111/j.0031-9317.2004.00339.xCurtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979De Simone, O., Haase, K., Müller, E., Junk, W. J., Hartmann, K., Schreiber, L., & Schmidt, W. (2003). Apoplasmic Barriers and Oxygen Transport Properties of Hypodermal Cell Walls in Roots from Four Amazonian Tree Species. Plant Physiology, 132(1), 206-217. doi:10.1104/pp.102.014902Debeaujon, I., Léon-Kloosterziel, K. M., & Koornneef, M. (2000). Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiology, 122(2), 403-414. doi:10.1104/pp.122.2.403Domergue, F., Vishwanath, S. J., Joubès, J., Ono, J., Lee, J. A., Bourdon, M., … Rowland, O. (2010). Three Arabidopsis Fatty Acyl-Coenzyme A Reductases, FAR1, FAR4, and FAR5, Generate Primary Fatty Alcohols Associated with Suberin Deposition. Plant Physiology, 153(4), 1539-1554. doi:10.1104/pp.110.158238Espley, R. V., Brendolise, C., Chagné, D., Kutty-Amma, S., Green, S., Volz, R., … Allan, A. C. (2009). Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. The Plant Cell, 21(1), 168-183. doi:10.1105/tpc.108.059329Farrant, J. M., & Moore, J. P. (2011). Programming desiccation-tolerance: from plants to seeds to resurrection plants. Current Opinion in Plant Biology, 14(3), 340-345. doi:10.1016/j.pbi.2011.03.018Fornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A., & Coupland, G. (2009). Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell, 17(1), 75-86. doi:10.1016/j.devcel.2009.06.015Gutierrez, L., Van Wuytswinkel, O., Castelain, M., & Bellini, C. (2007). Combined networks regulating seed maturation. Trends in Plant Science, 12(7), 294-300. doi:10.1016/j.tplants.2007.06.003Hajdu, A., Ádám, É., Sheerin, D. J., Dobos, O., Bernula, P., Hiltbrunner, A., … Nagy, F. (2015). High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis. The Plant Journal, 83(5), 794-805. doi:10.1111/tpj.12926Haughn, G., & Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science, 10(10), 472-477. doi:10.1016/j.tplants.2005.08.005He, H., de Souza Vidigal, D., Snoek, L. B., Schnabel, S., Nijveen, H., Hilhorst, H., & Bentsink, L. (2014). Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. Journal of Experimental Botany, 65(22), 6603-6615. doi:10.1093/jxb/eru378Hedden, P., & Thomas, S. G. (2012). Gibberellin biosynthesis and its regulation. Biochemical Journal, 444(1), 11-25. doi:10.1042/bj20120245Hellens, R., Allan, A., Friel, E., Bolitho, K., Grafton, K., Templeton, M., … Laing, W. (2005). Plant Methods, 1(1), 13. doi:10.1186/1746-4811-1-13Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431-438. doi:10.1016/s1360-1385(01)02052-0Holdsworth, M., Kurup, S., & MKibbin, R. (1999). Molecular and genetic mechanisms regulating the transition from embryo development to germination. Trends in Plant Science, 4(7), 275-280. doi:10.1016/s1360-1385(99)01429-6Hu, J., Mitchum, M. G., Barnaby, N., Ayele, B. T., Ogawa, M., Nam, E., … Sun, T. (2008). Potential Sites of Bioactive Gibberellin Production during Reproductive Growth in Arabidopsis. The Plant Cell, 20(2), 320-336. doi:10.1105/tpc.107.057752Hudson, M. E., & Quail, P. H. (2003). Identification of Promoter Motifs Involved in the Network of Phytochrome A-Regulated Gene Expression by Combined Analysis of Genomic Sequence and Microarray Data. Plant Physiology, 133(4), 1605-1616. doi:10.1104/pp.103.030437Jofuku, K. D., den Boer, B. G., Van Montagu, M., & Okamuro, J. K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell, 6(9), 1211-1225. doi:10.1105/tpc.6.9.1211Kim, Y.-C., Nakajima, M., Nakayama, A., & Yamaguchi, I. (2005). Contribution of Gibberellins to the Formation of Arabidopsis Seed Coat Through Starch Degradation. Plant and Cell Physiology, 46(8), 1317-1325. doi:10.1093/pcp/pci141Kotak, S., Vierling, E., Bäumlein, H., & Koskull-Döring, P. von. (2007). A Novel Transcriptional Cascade Regulating Expression of Heat Stress Proteins during Seed Development of Arabidopsis. The Plant Cell, 19(1), 182-195. doi:10.1105/tpc.106.048165Le, B. H., Cheng, C., Bui, A. Q., Wagmaister, J. A., Henry, K. F., Pelletier, J., … Goldberg, R. B. (2010). Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proceedings of the National Academy of Sciences, 107(18), 8063-8070. doi:10.1073/pnas.1003530107Leivar, P., & Quail, P. H. (2011). PIFs: pivotal components in a cellular signaling hub. Trends in Plant Science, 16(1), 19-28. doi:10.1016/j.tplants.2010.08.003Liu, L.-J., Zhang, Y.-C., Li, Q.-H., Sang, Y., Mao, J., Lian, H.-L., … Yang, H.-Q. (2008). COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis. The Plant Cell, 20(2), 292-306. doi:10.1105/tpc.107.057281De Lucas, M., & Prat, S. (2014). PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytologist, 202(4), 1126-1141. doi:10.1111/nph.12725Molina, I., Ohlrogge, J. B., & Pollard, M. (2007). Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. The Plant Journal, 53(3), 437-449. doi:10.1111/j.1365-313x.2007.03348.xNesi, N., Debeaujon, I., Jond, C., Stewart, A. J., Jenkins, G. I., Caboche, M., & Lepiniec, L. (2002). The TRANSPARENT TESTA16 Locus Encodes the ARABIDOPSIS BSISTER MADS Domain Protein and Is Required for Proper Development and Pigmentation of the Seed Coat. The Plant Cell, 14(10), 2463-2479. doi:10.1105/tpc.004127Ogé, L., Bourdais, G., Bove, J., Collet, B., Godin, B., Granier, F., … Grappin, P. (2008). Protein Repair l-Isoaspartyl Methyltransferase1 Is Involved in Both Seed Longevity and Germination Vigor in Arabidopsis. The Plant Cell, 20(11), 3022-3037. doi:10.1105/tpc.108.058479Ó’Maoiléidigh, D. S., Graciet, E., & Wellmer, F. (2013). Gene networks controllingArabidopsis thalianaflower development. New Phytologist, 201(1), 16-30. doi:10.1111/nph.12444Parcy, F., Valon, C., Kohara, A., Miséra, S., & Giraudat, J. (1997). The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. The Plant Cell, 9(8), 1265-1277. doi:10.1105/tpc.9.8.1265Park, D. H., Lim, P. O., Kim, J. S., Cho, D. S., Hong, S. H., & Nam, H. G. (2003). The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling. The Plant Journal, 34(2), 161-171. doi:10.1046/j.1365-313x.2003.01710.xPi, L., Aichinger, E., van der Graaff, E., Llavata-Peris, C. I., Weijers, D., Hennig, L., … Laux, T. (2015). Organizer-Derived WOX5 Signal Maintains Root Columella Stem Cells through Chromatin-Mediated Repression of CDF4 Expression. Developmental Cell, 33(5), 576-588. doi:10.1016/j.devcel.2015.04.024Pollard, M., Beisson, F., Li, Y., & Ohlrogge, J. B. (2008). Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 13(5), 236-246. doi:10.1016/j.tplants.2008.03.003Puig, J., Pauluzzi, G., Guiderdoni, E., & Gantet, P. (2012). Regulation of Shoot and Root Development through Mutual Signaling. Molecular Plant, 5(5), 974-983. doi:10.1093/mp/sss047Rajjou, L., & Debeaujon, I. (2008). Seed longevity: Survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies, 331(10), 796-805. doi:10.1016/j.crvi.2008.07.021Riechmann, J. L., Heard, J., Martin, G., Reuber, L., -Z., C., Jiang, … -L. Yu, G. (2000). Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among Eukaryotes. Science, 290(5499), 2105-2110. doi:10.1126/science.290.5499.2105Sano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., & Seo, M. (2015). Staying Alive: Molecular Aspects of Seed Longevity. Plant and Cell Physiology, 57(4), 660-674. doi:10.1093/pcp/pcv186Santos-Mendoza, M., Dubreucq, B., Baud, S., Parcy, F., Caboche, M., & Lepiniec, L. (2008). Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. The Plant Journal, 54(4), 608-620. doi:10.1111/j.1365-313x.2008.03461.xSattler, S. E., Gilliland, L. U., Magallanes-Lundback, M., Pollard, M., & DellaPenna, D. (2004). Vitamin E Is Essential for Seed Longevity and for Preventing Lipid Peroxidation during Germination. The Plant Cell, 16(6), 1419-1432. doi:10.1105/tpc.021360Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. The Plant Cell, 18(5), 1121-1133. doi:10.1105/tpc.105.039834Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7Shigeto, J., Kiyonaga, Y., Fujita, K., Kondo, R., & Tsutsumi, Y. (2013). Putative Cationic Cell-Wall-Bound Peroxidase Homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, Are Involved in Lignification. Journal of Agricultural and Food Chemistry, 61(16), 3781-3788. doi:10.1021/jf400426gSparks, E., Wachsman, G., & Benfey, P. N. (2013). Spatiotemporal signalling in plant development. Nature Reviews Genetics, 14(9), 631-644. doi:10.1038/nrg3541Suzuki, M., & McCarty, D. R. (2008). Functional symmetry of the B3 network controlling seed development. Current Opinion in Plant Biology, 11(5), 548-553. doi:10.1016/j.pbi.2008.06.015Tan, Q. K.-G., & Irish, V. F. (2006). The Arabidopsis Zinc Finger-Homeodomain Genes Encode Proteins with Unique Biochemical Properties That Are Coordinately Expressed during Floral Development. Plant Physiology, 140(3), 1095-1108. doi:10.1104/pp.105.070565Ülker, B., & Somssich, I. E. (2004). WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 7(5), 491-498. doi:10.1016/j.pbi.2004.07.012Wachsman, G., Sparks, E. E., & Benfey, P. N. (2015). Genes and networks regulating root anatomy and architecture. New Phytologist, 208(1), 26-38. doi:10.1111/nph.13469Weigel, D., Ahn, J. H., Blázquez, M. A., Borevitz, J. O., Christensen, S. K., Fankhauser, C., … Chory, J. (2000). Activation Tagging in Arabidopsis. Plant Physiology, 122(4), 1003-1014. doi:10.1104/pp.122.4.1003Western, T. L., Young, D. S., Dean, G. H., Tan, W. L., Samuels, A. L., & Haughn, G. W. (2003). MUCILAGE-MODIFIED4 Encodes a Putative Pectin Biosynthetic Enzyme Developmentally Regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis Seed Coat. Plant Physiology, 134(1), 296-306. doi:10.1104/pp.103.035519Xu, H., Wei, Y., Zhu, Y., Lian, L., Xie, H., Cai, Q., … Zhang, J. (2014). Antisense suppression ofLOX3gene expression in rice endosperm enhances seed longevity. Plant Biotechnology Journal, 13(4), 526-539. doi:10.1111/pbi.12277Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science, 10(2), 88-94. doi:10.1016/j.tplants.2004.12.012Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7(12), 555-560. doi:10.1016/s1360-1385(02)02362-2Zhang, C., Mallery, E. L., Schlueter, J., Huang, S., Fan, Y., Brankle, S., … Szymanski, D. B. (2008). Arabidopsis SCARs Function Interchangeably to Meet Actin-Related Protein 2/3 Activation Thresholds during Morphogenesis. The Plant Cell, 20(4), 995-1011. doi:10.1105/tpc.107.05535
    corecore